
 
 
 

 FFH2015-SIM1-2     S.1  

Parameter Identification for Simulation Models by  

Heuristic Optimization 

Michael Kommenda, Stephan Winkler 

FH OÖ Forschungs & Entwicklungs GmbH, Softwarepark 13, A-4232 Hagenberg, AUSTRIA  

 
ABSTRACT: 

In this publication we describe a generic parameter identification approach that couples the heuristic opti-

mization framework HeuristicLab with simulation models implemented in MATLAB or Scilab. This approach 

enables the reuse of already available optimization algorithms in HeuristicLab such as evolution strategies, 

gradient-based optimization algorithms, or evolutionary algorithms and simulation models implemented in 

the targeted simulation environment. Hence, the configuration effort is minimized and the only necessary 

step to perform the parameter identification is the definition of an objective function that calculates the 

quality of a set of parameters proposed by the optimization algorithm; this quality is here calculated by 

comparing originally measured values and those produced by the simulation model using the proposed 

parameters. The suitability of this parameter identification approach is demonstrated using an exemplary 

use-case, where the mass and the two friction coefficients of an electric cart system are identified by ap-

plying two different optimization algorithms, namely the Broyden-Fletcher-Goldfarb-Shanno algorithm and 

the covariance matrix adaption evolution strategy. Using the here described approach a multitude of opti-

mization algorithms becomes applicable for parameter identification. 

1 INTRODUCTION 

Simulation models are used for describing processes and systems of the real world as closely 

as possible, analyzing and predicting system behavior, and testing alternatives for the original 

system’s design or parametrization. Dynamical, technical systems are often modeled using 

differential equation systems; usually, first appropriate equation systems are defined, and after-

wards their parameters are adjusted so that the resulting set of equations resembles the mod-

eled system as closely as possible. 

In this context, parameter identification is the identification of the best parameter values for a 

simulation model [1,2] that has to be adapted to the concrete circumstances of the modelled 

system in order to match the real world as exactly as possible. These adaptations are neces-

sary simply because otherwise the predictions of the simulation model would be inaccurate. For 

example, the friction coefficients of a cart vary depending on the surface it is moved on and 

have to be adapted for the respective simulation model. The only prerequisite of this parameter 

optimization approach is that the structure of the simulation model has to match the system 

which is modelled; if not any adaptation to the real system would certainly fail, regardless of the 

effort used for parameter optimization. 

We here investigate whether and to what extent heuristic optimization methods can be used 

for identifying parameters of systems by optimizing parameters of simulations. As we see in the 

empirical part of the paper, this is possible – which indicates that the here discussed approach 

for simulation-based optimization is applicable for various kinds of systems. 

2 PARAMETER IDENTIFICATION 

The parameter identification process using simulation models is illustrated in Figure 1. The op-

timization algorithm controls the overall workflow and triggers the associated simulation when-

ever necessary. A possible solution candidate (usually a set of parameters) is passed to the 

simulation which then returns the outcome of the concrete simulation model executed with the 

provided parameters. The outcome of the simulation model is then aggregated into a quality 
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value to allow the assessment of the solution candidate and is returned to the optimization. This 

quality value expresses the accordance between the outcome of the simulation model with the 

currently used parameter values and the measurements observed in real world. In many cases 

the sum of deviations at predefined time steps is calculated and used as quality value. The op-

timization generates new solution candidates (which are again evaluated by the simulation) and 

tries to minimize/maximize the objective function. If the simulation model contains stochastic 

elements, the returned quality has to be seen as a random variable and often multiple simula-

tion runs with the same parameter set have to be executed to estimate the expected quality 

accurately.  

 

 

Figure 1. Schematic representation of the parameter identification process for simulation models. 

Optimization algorithms often use simulation models when, for example, a closed-from repre-

sentation of the objective function is not feasible due to complex stochastic elements or dynamic 

interactions. In this context the application of heuristic optimization algorithms has been proven 

fruitful [3,4]. 

2.1 Heuristic Optimization Algorithms 

In general, heuristic algorithms are designed to find solutions for optimization problems with 

limited knowledge and time. Such methods have the advantage that they can be used when a 

problem cannot be solved analytically due to its size or complexity [5]. 

In the context of real-valued parameter identification the challenge is to find parameter values 

so that the predicted state variables of the simulation correspond to actually measured values 

as closely as possible. Thus, the optimization routine used to identify parameters of the system 

(i.e., to optimize the parameters of the simulation model) has to execute the simulation and 

compare the predicted and the actual values. This information is used to assess the quality of 

the parameter combinations created and for guiding the algorithm’s evolutionary process. 

This approach is independent of the type of simulation model and simulation framework, and 

therefore can be used for various simulation models; any algorithm that is able to handle solu-

tion candidates encoded as real-vectors could be used to solve such parameter identification 

problems. 

2.2 Coupling of HeuristicLab with Simulation Frameworks 

The HeuristicLab framework [6] provides several algorithms which are suitable for parameter 

identification of simulation models: genetic algorithms, evolution strategies, simulated annealing, 

etc. The use of optimization algorithms provided by HeuristicLab for parameter identification has 

been enabled by implementing a layer that handles the communication with the targeted simula-

tion environment. Most simulation environments already provide multiple possibilities to couple 

them with external applications and to programmatically utilize their functionality. The technolo-

gies for such a coupling range from direct calls to specialized application programming interfac-

es (API), the component object model (COM) for inter-process communication, or web services. 

A drawback is that this coupling, regardless of the utilized technology, is specific to the targeted 

simulation environment. However, such a layer can be implemented in a generic way which 

allows the execution of arbitrary commands instead of running a specific simulation model and 

hence its reusability is ensured. 

We have implemented a layer for the communication between HeuristicLab and Scilab [7] and 

HeuristicLab and MATLAB [8]. Both of these frameworks were originally designed to perform 
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numeric computation and provided specialized components which ease the development of 

continuous simulation models. Based on these layers we have developed a real-vector encoded 

parameter optimization problem, where solution candidates are encoded as real-vectors, and 

the quality of a solution candidate is evaluated by a script in the programming language of the 

target simulation environment. Hence, not only parameter identification of simulation models 

can be performed, but any optimization problems, for which the quality of a solution candidate is 

calculated by a numeric computation framework, can be solved in this way. 

An exemplary optimization problem, which tunes the coefficient of a polynomial is depicted in 

Figure 2. Here, the quality of a solution candidate is calculated by the encapsulated Scilab script 

as the average absolute error calculated at ten positions. Besides the quality function the prob-

lem also defines the name of the parameters and the quality variable, the problem size or di-

mension, the bounds for the solution candidate (minimum and maximum value for each varia-

ble), and whether the quality value should be maximized or minimized. 

 

 

Figure 2. Screenshot of a five-dimensional Scilab parameter optimization problem in HeuristicLab. 

3 USE CASE - ELECTRIC CART SIMULATION 

The well-known cart system with an electric motor was used as a reference application to test 

the suitability and effectiveness of the described approach. A certain voltage was applied to the 

cart’s motor and the resulting movement was tracked. Furthermore, a system model in terms of 

differential equations (given in Equations 1-4) was developed and implemented in both simula-

tion frameworks Scilab and MATLAB. Every parameter and state variable of the simulation is 

known, except the mass of the cart (𝑚1), the linear friction coefficient (d1) and the static friction 

coefficient (𝐹𝐶), which have to be identified by the optimization process based on a known cur-

rent (𝑢𝐴) and measurements of the position (𝑥) of the cart.  

𝑥′ = 𝑣 (1) 

𝑣′ =  −
d1

𝑚̃
 𝑣 −

1

𝑚̃
 𝐹𝐶  sign(𝑣) +

𝑘𝑚𝑛

𝑟 𝑚̃ 
𝑖𝐴 (2) 

𝑖𝐴′ =  −
𝑘𝑚 𝑛

𝐿𝐴 𝑟
 𝑣 −

𝑅𝐴

𝐿𝐴
𝑖𝐴 +

𝑢𝐴

𝐿𝐴
 (3) 

𝑚̃ = 𝑚1 + 𝐽𝐴 (
𝑛

𝑟
)

2

 (4) 

 

The response of the simulation model in terms of the cart’s position and velocity for three differ-

ent combinations of the parameters to identify is shown in Figure 2. “Original Model” shows the 

response with the correct values for the mass and the two friction coefficients, whereas “Model 

with increased mass” shows the response with a higher mass (slower acceleration and slow 



 
 
 

 FFH2015-SIM1-2     S.4  

down) and “Model with increased friction” shows the response with higher friction coefficient 

(constant offset in position and velocity). 

 

  

Figure 3. The response of the simulation model with the correct parameter values, with an increased mass 

and with increased friction coefficients in terms of the cart’s position and velocity. 

We have applied a limited memory variant of the Broyden–Fletcher–Goldfarb–Shanno algorithm 

(LM-BFGS) [9] and the covariance matrix adaption evolution strategy (CMA-ES) [10] on this 

parameter identification problem and performed 50 repetitions of each algorithms, where the 

number of simulation model evaluations has been limited to 1000. The correct parameter values 

for this experiment were 1.5 for the mass, 1.0 for the linear friction and 0.5 for the static friction 

and the quality of a proposed parameter set has been calculated as the average absolute error 

in the cart’s position. An algorithm execution is considered successful, if all three parameters 

were identified with a tolerance of 10
-2

. The detailed results in terms of the number of success 

full runs, the obtained quality and the identified parameter values are reported in Table 1. 

Table 1. Results of 50 repetitions of the optimization algorithms (average ± standard deviation). Success-
ful runs denotes the number of times the correct parameter values have been identified, quality the aver-
age absolute error in the cart’s position and the other rows the identified parameter values. 

Results LM-BFGS CMA-ES 

Successful runs 13 / 50 47 / 50 

Quality (µ ± σ) 0.043 ± 0.055 0.000 ± 0.000 

Mass (𝑚1, target 1.5) 1.499 ± 0.007 1.500 ± 0.000 

Linear friction (d1, target 1.0) 0.968 ± 0.472 1.000 ± 0.004 

Static friction (𝐹𝐶, target 0.5) 0.516 ± 0.199 0.500 ± 0.002 

 

The best result on this parameter identification problem with respect to the obtained quality and 

the number of successful runs have been obtained by the CMA-ES. The explanation is that the 

CMA-ES uses multiple parameter sets simultaneously, whereas the LM-BFGS optimizes one 

single parameter set iteratively and therefore, the CMA-ES is less likely to get stuck in a local 

optimum. The performance of the LM-BFGS could be easily improved by incorporating multiple 

restarts of the algorithm, but this would have exceeded the number of simulation models evalua-

tions and resulted in an unfair algorithm comparison.  

4 CONCLUSION 

In this publication we have presented a generic parameter identification approach using simula-

tion models and heuristic optimization algorithms. We have demonstrated its suitability to identi-

fy the parameters of an electric cart system by applying two optimization algorithms. The ad-

Original model Model with increased mass Model with increased friction
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vantage of this approach is that existing simulation models implemented in either Scilab or 

MATLAB and optimization algorithms provided by HeuristicLab can be reused. Furthermore, no 

information about the concrete simulation model is needed as the only information exchanged is 

a set of parameters generated by the optimization algorithm and its quality value calculated by 

the simulation model. Therefore, a whole new range of optimization algorithm becomes applica-

ble to parameter identification. In the exemplary use-case the best results have been obtained 

by the CMA-ES algorithm, which further highlights the usefulness of heuristic optimization 

methods for parameter identification. 
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