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ABSTRACT: 

In this work an autonomous system for balancing and orbit control of a metal ball on a moving flat plate 

was developed, designed and successfully realized. The position detection of the ball is realized using a 

resistive touchpad on a glass plate. The panel can be tilted by two digital servo motors via a central uni-

versal joint in two solid angles. Both, position detection of the ball and motor drive require a control algo-

rithm which was implemented on a microcontroller board. The mathematical modeling of the dynamic 

system behavior consisting of the servo drive, mechanics of ball and structure plus the touchpad have 

been verified by measurements. Based on this analytical model a classical PID controller as well as a 

modern state space control including state observer have been realized. Thus fast and accurate control as 

well as disturbance responses for PID/state control showing a settling time of tset=6s/2s with an overshoot 

laboratory exercises, even further more advanced algorithms like Linear-Quadratic Regulator (LQR), 

Dead-Beat, Fuzzy, etc. can be implemented and compared easily. 
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1 INTRODUCTION  

The design of the system was intended to be built in a clean and durable way for universal use 

for laboratory exercises as part of the control theory course. Therefore a comprehensive state of 

the art research of already realized ball on a plate systems was done. First the position detec-

tion of the ball, representing a key element of the system, was decided to be realized with a 

nearly perfect flat glass plate resistive touchpad featuring easy readout instead of bulky camera 

based systems used in [1, 2]. Though the realization in [2] uses linear  

 

 

Figure 1. Realized ball on a plate system. 
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Figure 2. Geometric representation of the forces. 

moving magnetic actuators, a compact implementation with two digital servo motors, one for 

each angle, with rods for the plate motion, is preferred. In [3] a complex mechanical construction 

featuring outer joints is shown. Here a simple central joint has been designed to carry the plate 

and ensure proper independent movement of both angles. The mechanical system was com-

pletely constructed via 3D CAD model. Thus the required mechanical parts could be manufac-

tured easily. Fig. 1 shows the realized ball on a plate system. The system features a microcon-

troller board type STM32F4-Discovery-Board [4] for readout of the ball position from the touch-

pad and real-time calculation of the required control signal for the two decoupled control loops 

with a servo motor each. The functional setup is first used for system identification and then 

compared to the analytical model. Out of this the controller synthesis of a classical PID control-

ler as well as state space control including state observer is shown next. The TUSTIN discretiza-

tion [5] of these control algorithms permit real-time implementation on the microcontroller. Next 

the step responses for the two controllers are being measured and compared. Finally this setup 

is open for the implementation and comparison of other advanced control algorithms. 

2 MODELLING OF THE SYSTEM 

Prior to the synthesis of the controller the dynamic behavior of the system has to be identified. 

The system of a single axis contains the servo motor, the mechanical part and the touchpad to 

be used as a position sensor. For the dynamic behavior of the servo motor with input PWM(s) 

and output angle (s) a PT1 transfer element Gservo(s) with a gain kservo=0.03[𝑟𝑎𝑑 %⁄ ] and a time 

constant T1=32ms have been measured. 

𝐺𝑠𝑒𝑟𝑣𝑜(𝑠) =
Φ(𝑠)

ΔPWM(𝑠)
=

𝑘𝑠𝑒𝑟𝑣𝑜

1+𝑠𝑇1 
 (1) 

The mechanical part can be determined analytically by a short analysis of the forces (fig. 2). 

Therefore the following equations result together with the parameters: mass m and radius r of 

the ball, acceleration a, gravity acceleration g, angle of inclination , angular acceleration a/r, 

torque of inertia J=0.4mr² of the ball [6] and finally normal force FN and frictional force FR which 

can be neglected for the motion of the steel ball on a glass plate. 

 

𝑚 𝑎 = 𝑚 𝑔 𝑠𝑖𝑛 𝜑 − 𝐹𝑅 x-direction (2) 

0 = 𝐹𝑁 − 𝑚 𝑔 cos 𝜑 y-direction (3) 

𝐹𝑅  𝑟 = 𝐽 𝛼  rotation (4) 
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Figure 3. a.) Standard control loop and b.) block diagram of the system. 

Together with the legitimate linearization for small angles  sin 𝜑 ≈ 𝜑, the linear acceleration and 

the position of the ball result in the following step.  

𝑎(𝑡) =
𝑑𝑣

𝑑𝑡
=

𝑑2𝑥

𝑑𝑡2 =
𝑔 sin 𝜑

1.4
≈

𝑔 𝜑

1.4
 (5) 

𝑥(𝑡) = ∫ ∫ 𝑎(𝑡) 𝑑𝑡2 =
𝑔 𝜑

1.4
 
𝑡2

2
+  𝑡 𝑣0 + 𝑥0 (6) 

Next the LAPLACE transformation is applied to (6) for neglected initial conditions and then divided 

by an assumed angular input step. This leads directly to the searched transfer function of the 

mechanical system Gmech(s) with input angle (s) and output position X(s) and I2-element prop-

erties with a gain of kmech=7[m/rad]. 

𝐺𝑚𝑒𝑐ℎ(𝑠) =
𝑋(𝑠)

Φ(𝑠)
=

𝑔

1.4 𝑠2 
=

𝑘𝑚𝑒𝑐ℎ

𝑠2 
 (7) 

The touchpad measures the ball position with a resolution of 12bit for a maximal x-distance of 

0.34m, ending up in the P-transfer function Gpad,x(s) with input position X(s), output measure-

ment value Xmeas(s) and gain kpad,x=1.2·10
4
[px/m]. 

𝐺𝑝𝑎𝑑,𝑥 =
𝑋𝑚𝑒𝑎𝑠(𝑠)

𝑋(𝑠)
=

212

0.34

[𝑝𝑥]

[𝑚]
= 𝑘𝑝𝑎𝑑,𝑥 (8) 

Out of these transfer elements the complete I2T1-system transfer function for x-direction Gx(s) 

results with a system gain 𝑘𝑠 = 𝑘𝑠𝑒𝑟𝑣𝑜  𝑔
𝑘𝑝𝑎𝑑

1.4
= 2532 [

𝑝𝑖𝑥

%
], see fig. 3 b.).  

𝐺𝑥(𝑠) =
𝑋(𝑠)

𝛥𝑃𝑊𝑀𝑥(𝑠)
= 𝐺𝑠𝑒𝑟𝑣𝑜  𝐺𝑚𝑒𝑐ℎ  𝐺𝑝𝑎𝑑 =

𝑘𝑠

𝑠2(1+𝑠𝑇1) 
 (9) 

𝐺𝑦(𝑠) =
𝑌(𝑠)

ΔPWM𝑦(𝑠)
=

3

4 
𝐺𝑥(𝑠) (10) 

Both x- and y-directions can be considered to be decoupled due to the chosen centered ar-

rangement of the servos under the plate. Therefore only the touchpad aspect ratio of 4:3 has to 

be considered for the complete system transfer function in y-direction Gy(s). Fig. 4 shows a 

good match in the comparison of the measured and the modelled step response of the x-axis for 

a maximum angular step of =+17°. 

K (s )

+
+

co n tro lle r sys te m

fe e d b a ck

K (s )

+

+
+

K (s ) G (s )
UE

Z

+

- +
+W Y

d is tu rb a n ce

se t

va lu e

a c tu a l

va lu e

co n tro l

e rro r

co n tro l

s ig n a l

G se rvo G m e ch ,x

x

se rvo m o to r m e ch a n ics

a n g le p o s itio n

s y s te m  -  x  a x is G (s )x


x

G p a d ,x

x
m e a s

to u ch p a d

m e a su re d

p o s itio n

co n tro l

s ig n a l

sys te m

o u tp u t

P W M
x

P W M

s ig n a l



 FFH2015-SIM1-5     S.4  

 

Figure 4. Comparison of measured and modelled system step response. 

3 CONTROLLER SYNTHESIS 

Based on the derived transfer function of the I2T1-system, an appropriate controller can now be 

designed. First a simple PIDT1 controller is developed followed by the design of a more complex 

state control requiring a state observer. 

3.1 Standard control loop 

Looking at the bode plot of the I2T1-system with a phase of 𝜑𝐺 ≤ −180° (see fig. 5), it becomes 

clear that a controller with derivative (D) behavior for phase lead is required due to stability rea-

sons in order to obtain a sufficient phase margin. Further integral (I) controller behavior is de-

sired for accurate control. Therefore an appropriate PIDT1 controller for the corresponding trans-

fer function K(s) with the parameters kp=0.004, ki=0.003, kd=0.025 and Tx=10ms can be directly 

designed in the bode-plot. 

𝐾(𝑠) = 𝑘𝑝 +
𝑘𝑖

𝑠
+

𝑠𝑘𝑑

1+𝑠𝑇𝑥
 (11) 

Together with the open loop transfer function Fo(s), the control transfer function T(s) of the 

standard control loop results according to fig. 3a.) and [7,8]  

𝑇(𝑠) =
𝑌(𝑠)

𝑊(𝑠)
=

𝐹𝑜(𝑠) 

1+𝐹𝑜(𝑠)
 𝑎𝑛𝑑  𝐹𝑜(𝑠) = 𝐾(𝑠)𝐺(𝑠) (12) 

 

Figure 5. Bode plot of system G(s), controller K(s) and open loop Fo(s). 
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Moreover the disturbance transfer function Fz(s) is given. 

𝐹𝑧(𝑠) =
𝑦(𝑠)

𝑧𝑥(𝑠)
=

1 

1+𝐹𝑜(𝑠)
 (13) 

Fig. 5. shows the bode plots of the system G(s), controller K(s) and open loop Fo(s). Here a phase margin 

R=60° at crossover frequency D=6.3rad/s is achieved. Thus promising stable and accurate control of the 

ball on a plate system can be expected using this standard control loop.  

3.2 State control 

A modern approach for the control of the ball on a plate problem uses the state space descrip-

tion of the system [9].  

𝑥̇(𝑡) = 𝑨 𝑥(𝑡) + 𝑩 𝑢(𝑡) (14) 

𝑦(𝑡) = 𝑪 𝑥(𝑡) + 𝑫 𝑢(𝑡) (15) 

Therefore the transfer function of the system model of 3
rd

 order without feedthrough can directly 

be transferred to the state space representation, where we use the controller canonical form 

[10] according to (9, 10). 

𝑨 = [
0 1 0
0 0 1
0 0 − 1 𝑇1⁄

] 𝑩 = [
0
0
1

] (16) 

𝑪 = [𝑘𝑠 𝑇1⁄ 0 0] 𝑫 = [0] (17) 

3.3 Pole placing 

Compared to the indirect PID controller synthesis via phase margin of the open loop transfer 

function, the control response of the state space control can directly be defined via pole placing 

of the chosen stable poles P={p1, p2, p3}={-3.5+3.5j, -3.5-3.5j, -10.5}. Thus the state controller K 

is determined. Furthermore a prefilter V is required to ensure accurate control response. The 

complete state control for one axis is shown in fig. 6, see also [5,7,9,10].  

𝑑𝑒𝑡(𝑠𝑰 − 𝑨 − 𝑩𝑲) = (𝑠 − 𝑝1)(𝑠 − 𝑝2)(𝑠 − 𝑝3) (18) 

𝑲 = [𝑘1 𝑘2 𝑘3] = [−257.25  − 98   13.75] (19) 

𝑉 = −[𝑪(𝑨 + 𝑩𝑲)−1𝑩]−1 = 0.0035 (20) 

 

 

Figure 6. Single axis state control. 
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3.4 State observer 

The state space controller requires the input of the complete state variable, which cannot direct-

ly be measured. Therefore the actual states of the system are calculated in a parallel model, the 

state observer. Comparing the actual and the estimated output Δ𝑦(𝑡) = 𝑦(𝑡) − 𝑦̂(𝑡), the esti-

mated state variable is accurate if the dynamic of the observer is higher than of the system. The 

design of the observer N is done similar to the controller design via pole placement using Q={q1, 

q2, q3}={-18 -18 -80}. Both, controllability and observability of the system has been proven. Fur-

ther separate synthesis of controller and observer is mentioned. 

𝑑𝑒𝑡(𝑠𝑰 − 𝑨 + 𝑵𝑪) = (𝑠 − 𝑞1)(𝑠 − 𝑞2)(𝑠 − 𝑞3) (21) 

𝑵 = [

𝑛1

𝑛2

𝑛3

] = [
0.0012
0.0075
0.1162

] (22) 

3.5 Discretization 

For the implementation of the PIDT1 control algorithms a discretization with the sample time 
of the microcontroller board T=10ms is done. Using the Tustin approximation [8] we switch from 

continuous Laplace to discrete Z-transform of the controller transfer function 𝐾(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
→

𝐾(𝑧) =
𝑈(𝑧)

𝐸(𝑧)
 by substituting 𝑠 =

2

𝑇

𝑧+1

𝑧−1
. Thus the following control algorithm with continuous cycle 

count k is obtained and can directly be implemented into the microcontroller board. For the dis-
cretization of the state control see [5]. 

𝑢𝑘 = 1.98𝑢𝑘−1 − 0.98𝑢𝑘−2 + 0.17𝑒𝑘 − 0.23𝑒𝑘−1 + 0.06𝑒𝑘−2 (23) 

4 RESULTS 

A settling time of tset~6s and an overshoot of h=25% was achieved for the command response 

using the PID controller. This is a good behavior for the simple standard control loop due to the 

fact that the controller can react only to the complete delayed system response. Moreover the 

state feedback control shows a step response with tset=2s and h=0%. This significant im-

provement compared to the standard control results from the more direct feedback of the state 

space variables. Fig. 7 shows a comparison of both measured step responses. Also examined 

disturbance response of the realized controllers is quite satisfactory when deflecting the ball 

manually. Table 1 gives a comparison of control and disturbance responses for the realized 

system and similar realizations. The results of the other systems have been significantly ex-

ceeded. A further improvement of the dynamic behavior would require faster servo actuators 

and is not necessary for our demands. 
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Figure 7. Measured step responses: a.) PID and b.) state-space control. 

Table 1. Comparison of measured command and disturbance step response to state of the art results. 

  this work [1] [2] [3] [11] [12] 

  PID State Fuzzy PID Back State State 

command 

response 

tset ≤ 6s ≤ 2s 8s - 3s ≥ 2s 8s* 

h 25% 0% 0% - 2% - 20%* 

disturbance 

response 

tset ≤ 6s ≤ 2s - - 5s ≥ 2s  

h 25% 0% - - 3% -  

* reported response is not accurate in steady state 

5 CONCLUSION 

The stabilization of the realized ball on a plate system has been successfully shown using a PID 

control and a state control respectively. First a model of the complete system has been estab-

lished and could be confirmed by measurements of the system step response. Next a standard 

control loop with sufficient phase margin has been designed. The implementation of the ad-

vanced state control led to improved command and disturbance responses. Further control al-

gorithms like LQR, Dead-Beat Fuzzy, or non-linear controller can now easily be implemented 

and compared. 
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