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Abstract 

We present an approach based on augmented reality markers and inertial sensing to determine the 
position of mountain bikers without GPS. A helmet-mounted action camera is used as the input source 
for the marker detection, a bike computer measures the exact distance for the inertial sensing, and a 
smartphone both gives orientation data and serves as the central processing unit. Initial tests show 
that depending on the camera quality and resolution, an average accuracy between 0.17 m and 0.35 
m can be achieved.  
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1. Introduction 

Particularly in downhill segments, competitive mountain bikers routinely experience the situation that in 

races or even in training rides some physiologically comparable athletes are faster than others. 

Clearly, the optimal racing line influences this gap – which can open quite quickly over a couple of 

turns – and is therefore also accessed in sports such as alpine skiing (Skaloud/Limpach 2003) and car 

racing (Vesel 2014). In addition, the style of braking (short and hard, or long but soft), the orientation of 

the bike in turns, and the drift of the wheels might also contribute. For all the mentioned 

characteristics, it is important to know the exact position on the track at a certain point in time to make 

an exact comparison between riders.  

Since standard GPS-devices are not accurate enough for our purpose (Bauer 2013) and other 

systems (such as described by Arumugam 2013, Arumugam 2014, Kirkup et al. 2014) need additional 

special hardware, we present a positioning method for mountain bikers using a Kalman filtered 

combination of a marker-based approach and inertial sensing using commercial off-the-shelf 

components like mobile phones, action cameras, and bike computers. The presented approach can 

eventually be used to record and store a route taken on the optimal racing line (which would be 

performed by an expert rider). In addition, it can be compared with a route taken by a novice or 



2 

   
 

intermediate mountain biker to give direct feedback in real-time, possibly by the use of augmented 

reality glasses 

 

2. Positioning method 

By using a helmet-mounted action camera and employing a computer vision algorithm, we obtain 

positions relative to markers, which are to be installed along the track. To make the positioning more 

robust against situations in which the obtained video quality does not meet our demands, we make 

use of the bike computer (which gives distance and speed) and a mobile phone’s magnetometer.  

Marker-based positioning is a method for calculating the position and orientation (pose) of a camera 

out of an image of the camera and some known natural or artificial markers (placed along the track) 

which are represented in the image. After testing a couple of marker detection libraries under realistic 

conditions outside, we chose the AprilTag framework (Olson 2011). One of the requirements was that 

the marker detection had to be robust against different and changing light conditions or partly 

occlusions. In this context, robust not only means trying to always get an identified marker even under 

the mentioned bad circumstances, but first of all not identifying markers with a false ID number. The 

false-positive rate should be as low as possible. 

By using the four edge points of recognized artificial markers and a couple of camera specific 

parameters, it is possible to calculate the position of the camera in the marker coordinate system by 

solving the perspective n-point (PnP) problem (Nöll et al. 2011). Furthermore, we can use the ID of the 

marker to calculate the camera’s position in a local track coordinate system where multiple markers 

are placed. 

Due to diffuse frames, the calculated positions include an error and therefore form a point cloud which 

needs to be filtered. A local regression using robust weighted linear least squares and a second 

degree polynomial model was used for this. 

To even get positions when no markers can be found, the results are then combined with other sensor 

values like distance, speed, and orientation. The combination of different sources for the calculation of 

the position with a Kalman filter (Kalman 1960) makes the results less error-prone and of course more 

accurate. 

 

3. Evaluation and discussion 

Based on Chin 1987 and Adusei 2002, we used the x Percentile (%x or x-th), circular error probable 

(CEP), root mean square error (RMSE), and average error to evaluate the developed positioning 

system. 

For testing the proposed positioning method, we built a couple of 2D markers with side lengths ranging 

from 28 cm to 42 cm. The action camera which we used was the SJCAM SJ4000 WiFi (12 MP CMOS 

sensor, WIFI, max. video resolution 1920x1080 with 30 fps, 170° wide angle lens). During testing we 

found out that the best place to mount the camera is the helmet, as this reduces the vibrations to a 

minimum. 
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For the bike sensor measuring the exact distance, by counting the wheel revolutions via a magnet we 

used the Wahoo Blue SC speed and cadence sensor. This sensor is capable of counting the wheel 

and pedal revolutions and sending them to a smartphone via Bluetooth Low Energy. We mounted the 

sensor at the front wheel. In order to have a high resolution and accuracy, we mounted not only one 

magnet, but eight magnets instead. As a result, we got a distance event every 2.11 m / 8 = 0.26375 m. 

The Android-based phone, which is responsible for receiving the distance events from the bike sensor 

and measuring the orientation via its integrated compass, gyroscope, and accelerometer sensors were 

mounted on the top tube. 

 

3.1. General accuracy test 

The aim of the first test was to give an overview of the potential of the developed approach. Therefore, 

we set up a test track which includes a couple of turns (one marker for every turn) and also short 

straight sections. This test was also a basis for 

the other tests where different improvements and 

variations had been tested. 

The positions of the markers and therefore the 

whole local coordinate system were measured 

with the use of a laser distance measuring 

device. The width of the test track was around 

ten m with a height of around 27 m. To evaluate 

the developed system, we marked a reference 

line along the track with a barrier tape, where the 

test rider had to ride during the test and 

measured 198 reference points along this path. 

Figure 1 shows the positioning results of the 

general accuracy test. First of all, a simple 

concatenation of the inertial data sentences 

(dead reckoning) would not lead to satisfying 

results, as they would quickly drift away through 

the small error which is introduced by every 

measurement. Although the distance 

measurements are accurate due to the usage of 

the bike sensor, the orientation sensed by the 

smartphone internal sensors is not good enough 

for long term usage. But as we only use these 

measurements mainly as an extension to the 

marker based positioning approach in situations 

where no markers can be found, these inertial measurements are good enough for these shorter 

periods. Furthermore, in straight segments of the track they give us the opportunity to not place any 

Figure 1: Results of the general accuracy test. 



4 

   
 

markers as most of the error is introduced in the turns. In situations where markers were found, they 

have a good distribution regarding the error so that their smoothing results in accurate positions. 

Table 1 shows the performance measures for positions resulting from the marker based positioning 

only and for the final positions calculated by the Kalman filter. 

 

 Marker-based Kalman filtered 

avg. accuracy [m] 0.35 0.29 

RMSE [m] 0.43 0.37 

CEP (50%) [m] 0.26 0.24 

67% [m] 0.43 0.36 

75% [m] 0.52 0.41 

95% [m] 0.85 0.78 

25% [m] 0.14 0.14 

Median [m] 0.26 0.25 

Table 1: Performance measures of the general accuracy test. 

 

3.2. Going Test 

Analyzing the single frames processed in the general test shows that the camera used for testing the 

developed approach is not good enough at sharp focusing while changing the camera orientation, as 

this is the case in turns. The consequences of this effect can be seen in the general tests at some of 

the turns where no positions can be extracted. With this test, we wanted to show how the metrics 

change when a better camera is used. Since we did not have access to a higher quality action 

camera, we walked through the test track to give the camera more time to focus better. The metrics 

listed in table 2 depict the improvement. For example, the average error drops from 0.35 m to 0.17 m. 

 

 going test (marker-based) general test (marker-based) 

Avg. accuracy [m] 0.17 0.35 

RMSE [m] 0.22 0.43 

CEP (50%) [m] 0.14 0.26 

67% [m] 0.19 0.43 

75% [m] 0.24 0.52 

95% [m] 0.47 0.85 

25% [m] 0.06 0.14 

Median [m] 0.14 0.26 

Table 2: Performance measures of the going test. 
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3.3. Reduced Resolution Test 

With the current implementation, the position calculation on the mobile phone in real-time is not yet 

possible. At the moment, the frames per second rate for processing a video with the resolution of 

1920x1080 is around 5 fps. There are two limiting factors. The first one is the time to extract the 

frames and access the raw bytes in order to process them in the CPU. The decoding of the frames is 

not the problem as this is running on the graphical processing unit, but the access at the CPU takes up 

to 100ms for a frame with the size 1920x1080. The second limiting factor is the processing time for the 

marker detection of the frame. Since this time is proportional to the used frame size, a reduction of the 

resolution implies a shorter processing time for a single frame. We therefore assessed the impact of a 

reduced resolution on the accuracy by reducing the resolutions to 960x540 and 480x270. 

 

 1920x1080 960x540 480x270 

 m. b. K. f. m. b. K. f. m. b. K. f. 

avg. accuracy [m] 0.35 0.29 0.31 0.28 0.39 0.33 

RMSE [m] 0.43 0.37 0.40 0.35 0.54 0.46 

CEP (50%) [m] 0.26 0.25 0.24 0.21 0.26 0.22 

67% [m] 0.43 0.36 0.38 0.33 0.49 0.39 

75% [m] 0.52 0.41 0.53 0.44 0.67 0.49 

95% [m] 0.85 0.78 0.78 0.68 1.07 0.98 

25% [m] 0.14 0.14 0.11 0.10 0.07 0.06 

median [m] 0.26 0.25 0.24 0.22 0.26 0.22 

Table 3: Performance measures of the reduced resolution test. 

 

Table 3 as well as the boxplot in figure 2 (m. b. – marker-based) show that for the marker-based 

positioning, the reduction of the frame size to 960x540 results in a comparable accuracy as the 

original resolution of 1920x1280. However, a further decrease in resolution to 480x270 leads to 

decreased accuracy. For the Kalman filtered approach with inertial sensing (figure 2, K. f.), we can 

observe that the larger the errors of the marker based positions are, the more they get reduced as the 

inertial sensing gets more influence. 
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(a)                                                                        (b) 

Figure 2: Boxplots of the errors with different resolutions with and without Kalman filtering (a). 
Comparison of the cumulative distribution functions for all three resolution tests using the Kalman 

filtered positions (b). 
 
 
4. Conclusions and outlook 

The evaluation of the implemented concept shows that depending on camera quality and resolution, 

an average accuracy between 0.17 m and 0.35 m can be achieved. One of the strengths of the 

proposed approach is that in situations where no position can be calculated by the markers, the inertial 

sensing component continues the positioning with acceptable results. A deficit of the current 

implementation is that real-time processing is not possible which should be addressed in further work, 

for example by performing the computation solely on the GPU. Provided the evaluation is extended 

and performed under more realistic conditions, such as difficult lighting and bumpy downhill sections, 

the presented approach could be the base for further studies to track and compare racing lines in 

mountain biking.  
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